Lecture 0606:
Functions

Part 1 of 2

Outline for Today

* What is a Function?

* It’s more nuanced than you might expect.
* Domains and Codomains

 Where functions start, and where functions end.
* Defining a Function

« Expressing transformations compactly.
* Special Classes of Functions

« Useful types of functions you’ll encounter IRL.
 Proofs on First-Order Definitions

« A key skill.

What is a function?

Motivating Example 1: Database Sharding

alt.jagmail.

cocorosie@gmail.

woodkid@gmail.

sigur.ros@gmail.

the.xx@gmail.

Take CS244B!

Distributed Systems

com

com

com

com

com

Shard 5

Motivating Example 2: Data Clustering

Take CS24¢6!
Mining Massive Data Sefs

What'’s In Common?

 We have a fixed, known set of possible inputs.
* In our examples: user names and 2D data points
« We have a fixed, known set of possible outputs.

* In our examples: database shards and cluster
labels.

 Each input is assigned an output.

 Some outputs might be assigned multiple inputs.
 Some outputs might be assigned no inputs.

High-Level Intuition:
A function is an object f that takes in

exactly one input x and produces exactly
one output f(x).

X]c fx) _

(This is not definition. It’s just to
help you build and intuition.)

Domains and Codomains

« Every function f has two sets associated with it: its

domain and its codomain.

« A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the

codomain.

The function
must be defined
for every element
of the domain.

Domain

OQO!DO

Codomain

The output of the
function must
always be in the
codomain, but
not all elements
of the codomain
must be
produced as
outputs.

Domains and Codomains

« Every function f has two sets associated with it: its
domain and its codomain.

« A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the

codomain.
The domain of this function
is R. Any real number can be
provided as input.
'4 \
double absoluteValueOf(double x) {

The codomain of this function is if (x >=0) {
R. Everything produced is a real return Xx;
number, but not all real numbers } else {

can be produced. return -x;

}

Domains and Codomains

« If fis a function whose domain is A and whose
codomain is B, we write f: A - B.

 Think of this like a “function prototype” in C++.

Codomain Domain Domain Codomain

B_1;_§A arg); f:A-B

Function Function
name name

Some Observations

« Usually, when working with functions, you pick the
domain and codomain before defining the rule for the
function.

« Think programming: you usually know what types of things
you’'re working with before you know how they work.

* In mathematics, all functions take in exactly one
argument: an element of the domain.

« If you're clever, you can get two or more arguments to a function
while still obeying this rule. Chat with me after class to learn
more!

 In mathematics, functions are deterministic and can’t
behave randomly.

« If you're clever, you can get functions that kinda sorta ish look
random. Chat with me after class to learn more!

The Official Rules for Functions

 Formally speaking, we say that f: A — B if the following two
rules hold.

» First, f must be obey its domain/codomain rules:
Vae€A.3dabeB.f(a)=b
(“Every input in A maps to some output in B.”)
 Second, f must be deterministic:
Va: € A. Vaz € A. (a1 = az - f(a1) = f(az))
(“Equal inputs produce equal outputs.”)

» If you're ever curious about whether something is a
function, look back at these rules and check! For example:

« Can a function have an empty domain?
« Can a function have an empty codomain?

Defining Functions

Defining Functions

» To define a function, you need to
« specify the domain,
» specify the codomain, and
* give a rule used to evaluate the function.

« All three pieces are necessary.

e We need to domain to know what the function can be
applied to.

 We need to codomain to know what the output space is.
« We need the rule to be able to evaluate the function.

 There are many ways to do this. Let’s go over a few
examples.

White-Tailed Anna’s Red-Shouldered
Kite Hummingbird Hawk

Functions can be defined as a picture.
Draw the domain and codomain explicitly.
Then, add arrows to show the outputs.

f:7Z — Z, where
flx) =x*+ 3x-15

Functions can be defined as a rule.
Be sure to explicitly state what the
domain and codomain are!

f:7Z — N, where

e

In 1 n=0
f(n)_\—n if n<0

Some rules are given piecewise. We select which
rule to apply based on the conditions on the right.
(Just make sure at least one condition applies and that
all applicable conditions give the same result!)

Some Nuances

f: R - 1R, where

O X+2
fix) = 3

This expression isn’t
defined when x = -1, so f
isn’t defined over its full

domain. We therefore
don’t consider it to be a

function.

Answer at

https://cs103.stanford.edu/pollev

Is this a function from R to R?

https://cs103.stanford.edu/pollev

f: N = R, where

O X+2
fix) = 3

Answer at

Yep, it’s a function! Every

https://cs103.stanford.edu/pollev natural number maps to
some real number.

Is this a function from N to R?

https://cs103.stanford.edu/pollev

Time-Out for Announcements!

Problem Set One Solutions

* We’ve just posted solutions to Problem Set One. They're
linked from the main PS1 page.

 We recommend you read over our solution set before
finishing PS2.

* You'll get to see examples of polished written proofs.

« Each problem has a “Why We Asked This Question” section,
which gives some context.

 We may have solved the problem differently than you, and
this will give you more perspectives to use.

 We'll aim to have PS1 graded and returned Wednesday
morning / atfternoon.

* Please tag pages when submitting PDFs to Gradescope.

Essential Action Items

* Review your feedback when it comes available.

« Don’t just look at the raw score. Make sure you really,
truly understand where you need to improve.

* Read the solutions in depth.

 Make sure you understand what we were asking, why we
asked it, and what we wanted you to take away.

* (Especially for Q8, Q10) Look at our solutions and see if
there’s any neat lessons you can draw from them.

« Come to us with questions.

 Anything you're not sure about? That’s what we’re here
for! Come to office hours, ask questions on EdStem, etc.

Other Things to Have
On Your Radar

 Left-handed desk form

 due Monday of next week
 Attendance opt-out form

« available next week, due Friday
* Regret Clause Form

* due Tuesday, 1:00 PM

Back to CS103!

Special Types of Functions

What does this

theorem mean?
: Why, intuitively,
should it be true?

What terms are

used in this proof? °
What do they

formally mean?

Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?

Undoing by Doing Again

 Some operations invert themselves. For example:

» Flipping a switch twice is the same as not flipping it at all.
 In first-order logic, ——A is equivalent to A.
* In algebra, -(-x) = x.

* In set theory, (A A B) A B = A. (Yes, really!)

* Operations with these properties are surprisingly
useful in CS theory and come up in a bunch of

contexts.
« Storing compressed approximations of sets (XOR filters).
* Building encryption systems (symmetric block ciphers).

 Transmitting a large file to multiple receivers (fountain
codes).

Involutions

* A function f: A - A from a set back to itself is
called an involution when the following first-
order logic statement is true about f:

=+ Vx € A. f(f(x)) = x.

(“Applying f twice is equivalent to not
applying f at all.”)

* Involutions have lots of interesting properties.
Let’s explore them and see what we can find.

This is the tormal
definition., Use it
in proots.

This is jusT an
infuition, Don’t use
it in proofs.,

Involutions

 Which of the following are involutions?
o f:7Z — Z defined as f(x) = x. Yep!
e g:7Z - Z defined as g(x) = -x. Yep!
* h: R - R defined as h(x) = /x. Not a function!
* p: N — N defined as follows: Yep!

n+1 1if n is even

p(n) = n—1 if n is odd

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.

Involutions, Visually

+ -
-®
o

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.

Involutions, Visually

o

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.

Proofs on Involutions

Theorem: The function f: Z — Z defined as

_|n+1 1if n 1s even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean tor f o be an
involution?

vn € Z. f(f(n)) = n.

Theretore, we’ll have The reader
pick some n€Z, then argue Thal

f(f(n)) =1,

Theorem: The function f: Z — Z defined as
_|n+1 1if n 1s even
fln) = n—1 if n is odd
1S an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even. Then
we see that f(f(n)) =f(n-1)=Mn-1)+ 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. B

This proot contains no
first—order logic syntax
(quantifiers, connectives, efc,).
It's written in plain English,
jusT as usual,

Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

What does i mean for f fo be an involution?
vn € N. f(f(n)) = n.
What is The negation ot this statement?

-Vn € N. f(f(n)) =n

dn € N. = (f(f(n)) = n)
dn € N. f(f(n)) # n

Theretore, we need To find some concrete
choice ot n such that f(f(n)) = n.

Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

Proof: We need to show that there is some n € N where

f(f(n)) = n.
Pick n = 2. Then
f(fn)) = f(f(2))
= f(4)
= 10,
which means that f(f(n)) # n, as required. B

This proot contains no
first—order logic syntax
(quantifiers, connectives, efc,).
It's writfen in plain English,
jusT as usual,

Another Class of Functions

Mercury
Earth

—» Mars

/

/ \ —Uranus
/ \ — Neptune

—»Saturn

3
Q
Q‘l \ —>Jupiter
h
Y
s

Injective Functions

A function f: A - B is called injective (or one-to-one)
when the following statement is true about f:

Va: € A. Vaz € A. (a1 # az - f(a1) # f(az))
(“If the inputs are different, the outputs are different.”)

The following first-order definition is equivalent (why?)
and is often useful in proofs.

Va: € A. Vaz € A. (f(air) = f(az) - a1 = a2)
(“If the outputs are the same, the inputs are the same.”)
A function with this property is called an injection.

How does this compare to our second rule for functions?

Injections

e Let be the set of all CS103 students. Which of
the following are injective?

¢ f: — N where f(x) is x’s Stanford ID number.

* g: — , Where is the set of all continents and
g(x) is x’s continent of birth.

e h: — , wWhere is the set of all given (first)
names, where h(x) is x’s given (first) name.

f: A — B is injective when either equivalent statement is true:

Vxi1 € A. Vx2 € A. (x1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)

Proofs on Injections

Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the tunction f o be
injective?

Vm € N.Vnz2 € N. (f(m1) = f(n2) - n1 = n2)

Theretore, we'll pick arbifrary ni, nz €N,
assume fln1) = flnz), then prove that n: = n2,

Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(n1) = f(nz2), we see that

2ni1 + 7 = 2n2 + 7.
This in turn means that

2n1 = 2no2,

SO N1 = n2, as required. N

Good exercise: Repeat this
proot using the ofher
definition of injectivity:

Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.

Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We

will prove that n1 = na.

Since f(n1) = f(nz2), we see that

2ni1 + 7 = 2n2 + 7.

This in turn means that
2n1 = 2no2,

SO N1 = n2, as required. N

This proot contains
no first—order logic
synfax (quantifiers,
connectives, efc,), It's
writfen in plain English,
just as usual,

Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

What does it mean for ¥ to be injective?

Vx1 € Z. Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
What is the negafion of this statement?

=Vx1 € Z. Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. °Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. = (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. (x1 # x2 A = (f(x1) # f(x2)))
dx1 € Z. Ax2 € Z. (x1 # x2 A f(x1) = f(x2))

Therefore, we need fo find x1, x2 € Z such that x1 # x2, but fix1) = fixz).
Can we do that?

Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) =(-1)*=1

and

fix2) = (1) = 1* =1,

so f(x1) = f(xz2) even though x1 # x2, as required. W

To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Two More Classes of Functions

Lassen Peak

Mt. Shasta

Crater Lake

Mt. McLoughlin

Mt. Hood

Mt. St. Helens

Mt. Baker

Mt. Rainier

California

Surjective Functions

« A function f: A - B is called surjective (or

onto) when this first-order logic statement is
true about f:

Vb e B.3da€A.f(a)=b>b

(“For every possible output,
there's an input that produces it.”)

* A function with this property is called a
surjection.

« How does this compare to our first rule of
functions?

Check the appendix for
sample proofs involving
surjections.

Injections and Surjections

* An injective function associates at most
one element of the domain with each
element of the codomain.

* A surjective function associates at least
one element of the domain with each
element of the codomain.

e What about functions that associate
exactly one element of the domain with
each element of the codomain?

Bijections

* A bijection is a function that is both
injective and surjective.

* Intuitively, if f: A — B is a bijection, then
f represents a way of pairing otf elements
of A and elements of B.

Bijections

 Which of the following are bijections?
 f: R - R defined as f(x) = x. Yep!
 f:7Z - R defined as f(x) = x. Nope!
 f: R - Rdefined as f(x) = 2x + 1. Yep!
e f:7Z - Z defined as f(x) = 2x + 1. Nope!

A bijection is a function that is
both injective and surjective.

Next Time

» First-Order Assumptions

 The difference between assuming something
is true and proving something is true.

 Connecting Function Types

* Involutions, injections, and surjections are
related to one another. How?

 Function Composition

* Sequencing functions together.

Appendix: More Proofs on Functions

Proof 1: Proving a function is surjective.

Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean tor f fo be surjective?
VveR.IXER. f(X) =y

Therefore, we'll choose an arbitrary y € R,

Then prove that there is some x € R where
fx) = y.

Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that

fx)=fy/2)=2y/2=y.
So we see that f(x) = y, as required. H

This proot contains

no first—order logic

synfax (quantifiers,
connectives, efc,), I1’s
written in plain English,
jusT as usual,

Proof 2: Proving a function is
not surjective.

Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

What does it mean for g to be surjective?

Vn € N. dm € N. g(m) = n

What is the negation ot the above statement?

=Vn € N. 3m € N. g(m) = n
dn € N. =dm € N. g(m) = n
dn € N. Vm € N. g(m) # n

Theretore, we need to find a natural number n where,
regardless of which m we pick, we have g(m) # n,

Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N. We
need to show that g(m) # n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) # 137/, as required. W

This proof contains
no first—order logic
synfax (quantifiers,
connectives, etc,), It's
writfen in plain English,
just as usual,

